Software Testing & Quality Management Revision

COCOMO - COnstructive COst MOdel

3 model types -

Basic -
estimates software developement effort & cost as function of program size –

as estimated lines of code.

Intermediate -
same as basic but in addition it contains a set of cost drivers.

Advanced -
same as intermediate but with cost drivers for all steps of the software engineering process ie analysis, design etc.

Software projects are categorised as one of the following types :

Organic -
small teams, familiar enviroment, workers that know what they are doing, developing well understood applications.

Semi Detached -
mixed experience teams, may not be familiar with some parts of the syatem being developed.

Embedded -
a project that must be developed within a set of tight hardware, software & operational constraints.

Cost Drivers -
Intermediate version of COCOMO has 15 cost drivers allocated to 4 project attribute categories:

· product

· computer

· personnel

· project

With each cost driver is associated a range of “effort multipliers” eg EMR = effort multiplier range:

REQUIRED RELIABILITY – a product attribute cost driver, EMR is 1 (nominal) to 1.4 (very high) ie 1 if familiar with the task already or 1.4 if completely new concept.

STORAGE CONSTRAINTS – a machine attribute cost driver, EMR is 1 (nominal) to 1.56 (extra high) ie the tighter the storage constraints the greater the effort needed.

PROGRAMMING LANGUAGE EXPERIENCE – a personnel attribute cost driver, EMR is 1.14 (very low) to 0.95 (high) – NOTE: the decrease here.

Software Teams

Types of teams:

Democratic Decentralised (DD) -
 No permanent leaders, “Task coordinators” are appointed for short durations, group make decisions, commnication is horizontal.

Controlled Decentralised (CD) -
One defined leader & secondary leaders for sub-tasks,still has group approach to problem solving, communication amongst sub-groups is horizontal also has vertical commnication through control hierarchy. (Chief programmer structure)

Controlled Centralised (CC) -
Top level problem solving, coordination mamged by team leader, commnication is vertical.

Why do we need different team structures? Each team structure is more apt at differing tasks.

Dis/Advantages of each team structure –

DD team, needs low modularity due to the amount of commnication required, high moral, high job

satisfaction.

CC & CD teams produce fewer defects, DC teams generally need more time to complete projects

Quality Assurance

Qualtiy culture – Delivering software quality needs commitment from all levels – from director to coder. Commitment to qualtiy must be accepted & implemented by everybody.

Quality system – Company structure, responsibilities, activities & resources which ensure software delivered has the appropriate quality factors.

Quality manual – Those details of the quality system which can be written down. It contains a list of standards & guide lines which should be applied to projects developed by the company.

Quality factor – Quality is often defined as fitness for the intended purpose – this isn’t very usefull. So we define the quality of the product in terms of these factors:

· PORTABILITY

· USABILITY

· RE-USABILITY

· CORRECTNESS

· RELIABILITY

· MAINTAINABILITY

· TESTABILITY

· EFFICIENCY

· INTEGRITY

Quality assurance team – The quality system in any organisation is monitored by the QA team. There

 is normally one team which monitors the QA on all the projects, for it to remain unpressurised it

should answer to a different manager to the project team. The teams responsibilities are:

· Auditing projects

· Reviewing and improving quality system

· Developing standards & guidelines

· Producing quality plans

· Ensuring QA staff are properly trained

· Monitoring and reporting on quality within the organisation

They are NOT responsible for testing software!!!

Process/Product standards

Product standards – Rules that apply to a product:

· LAYOUT FORMATS

· VARIABLE NAMING CONVENTIONS

· DOCUMENT/FILE NAMING CONVENTIONS

Process standards – Desribe how a process is to be carried out:

· A list of applicable product standards

· What tests to run

· what to do if tests fail

· What forms to fill in

ISO 9000 BS5750

For software developement the relevant standard is 9001 (with guidance from 9000-3). They specify what areas the quality system must cover, but don’t give any product/process standards to use.

ISO 9000
General guidelines for ISO standards

ISO 9000-3
Guide lines for software developement

ISO 9001
Specifiaction for design, development, production, installation & servicing

ISO 9002
Specifiaction for production & installation

ISO 9003
Specification for final inspection & testing

ISO 9004
More guide lines

ISO & Quality system

ISO 9001 requires that a quality system for any organisation covers 20 areas, these are the most important one’s:

· Management responsibility

· quality system

· design control

· document control (configuration management)

· product identification & tracibility

· process control

· inspection & testing equipment, measuring

· inspection & test status

Validation & Verification

validation & requirements:

Requirements – statements

customers initial & informal ideas

Requirements Analysis

finding out in detail what the customer

really wants.

Requirements Definition

Re-stating the requirements formally

Formal requiremtents specification

To be used by the system designers

customer sign off

Legal agreement by customer &

developer

Requirements can be:

· Too abstract

· Ambiguous

· Badly Organised

· Describe data badly

· Platitudes (statements that mean nothing)

· Late changes

Software validation: are we building the right product.

Reviews: Validate requirements & verify design & implementation.

Validation methods:

Prototype –
I know this already

Simulation –
same as prototyping but used to see whether non-functional requirements, eg

response times & memory limitations.

Evolutionary development –
Deliver working prototype and take comments from users then

upgrade every couple of weeks.

Acceptance testing -
(alpha testing) only at end of project, structured tests with customers

present.

Software verification:
No required features omitted

No extra features added

All features correctly implemented

Verification methods:

Static -
document and code review

traceability techniques

source code analysis

mathematical proof

Dynamic – program testing and de-bugging

Review Concepts:

Document review
 - qulaity pla for project should specify which, who & what - should be reviewed.

Check lists – Quality plan for project should detail points to be examined during a review.

Checks performed during review:

· Adherence to appropriate Q/A standards

· Detailed checks against documents(s)

· Specifed or known problem areas eg are arrays correctly indexed?

Scrutineering – Author of document/file ask another team member to scrutineer their work (following project standards)

Formal inspection – Meeting with 4 people: moderator, author, reader (presents authors work) & tester.

Review problems:

· labour intensive

· boring

· slow & expensive

· dependant on staff quality

· defensive authors

Tracing requirements

Individual requirements implemented in class/method

Designs converted into source files

Source files converted into objects

Complete prog. implementes requirements

Forward traceability – Given a specific requirement forward traceability allows us to easily determine which classes, methods, objects implement it.

Reverse traceability – Given a specific method, class or object reverse traceability allows us to easily determine which specific requirements it helps to implement.

Traceability methods

Verification matrix – forward and reverse traceability.

Req no
Class 1
Class 2
Class 3

1.1
1.2
1.3
2.1
2.2
2.3
3.1
3.2
3.3

1
X

X

X
X

2

X
X
X
X

X

3
X

X
X
X
X

Traceability markers – comments in code eg /*REQ 1.2*/ format controlled by site standards.
Decide on which of these would be relevant for our software project ie a set of quality factors.

- 6 -

